Reduced Lagrangian and Hamiltonian Formulations of Euler–yang–mills Fluids

نویسندگان

  • François Gay-Balmaz
  • Tudor S. Ratiu
چکیده

The Lagrangian and Hamiltonian structures for an ideal gaugecharged fluid are determined. Using a Kaluza–Klein point of view, the equations of motion are obtained by Lagrangian and Poisson reductions associated to the automorphism group of a principal bundle. As a consequence of the Lagrangian approach, a Kelvin–Noether theorem is obtained. The Hamiltonian formulation determines a non-canonical Poisson bracket associated to these equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler-Poincaré Dynamics of Perfect Complex Fluids

Lagrangian reduction by stages is used to derive the Euler-Poincaré equations for the nondissipative coupled motion and micromotion of complex fluids. We mainly treat perfect complex fluids (PCFs) whose order parameters are continuous material variables. These order parameters may be regarded geometrically either as objects in a vector space, or as coset spaces of Lie symmetry groups with respe...

متن کامل

The Geometric Structure of Complex Fluids

This paper develops the theory of affine Euler-Poincaré and affine Lie-Poisson reductions and applies these processes to various examples of complex fluids, including Yang-Mills and Hall magnetohydrodynamics for fluids and superfluids, spin glasses, microfluids, and liquid crystals. As a consequence of the Lagrangian approach, the variational formulation of the equations is determined. On the H...

متن کامل

Lagrangian Reduction, the Euler–Poincaré Equations, and Semidirect Products

There is a well developed and useful theory of Hamiltonian reduction for semidirect products, which applies to examples such as the heavy top, compressible fluids and MHD, which are governed by Lie-Poisson type equations. In this paper we study the Lagrangian analogue of this process and link it with the general theory of Lagrangian reduction; that is the reduction of variational principles. Th...

متن کامل

Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flows

Parcel Eulerian–Lagrangian Hamiltonian formulations have recently been used in structure-preserving numerical schemes, asymptotic calculations, and in alternative explanations of fluid parcel (in)stabilities. A parcel formulation describes the dynamics of one fluid parcel with a Lagrangian kinetic energy but an Eulerian potential evaluated at the parcel’s position. In this paper, we derive the ...

متن کامل

The Euler–Poincaré Equations in Geophysical Fluid Dynamics

Recent theoretical work has developed the Hamilton’s-principle analog of Lie-Poisson Hamiltonian systems defined on semidirect products. The main theoretical results are twofold: 1. Euler–Poincaré equations (the Lagrangian analog of Lie-Poisson Hamiltonian equations) are derived for a parameter dependent Lagrangian from a general variational principle of Lagrange d’Alembert type in which variat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008